Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical skyrmions in the Bessel profile

Not Accessible

Your library or personal account may give you access

Abstract

Optical skyrmions formed in terms of polarization are topological quasi-particles, and they have garnered much interest in the optical community owing to their unique inhomogeneous polarization structure and simplicity in their experimental realization. These structures belong to the Poincaré beams satisfying the stable topology. We theoretically investigated the non-diffracting and self-healing Poincaré beams based on the superposition of two orthogonal Bessel modes by the longitudinal mode matching technique. These Poincaré beams are topologically protected, and we suggest them as optical skyrmions in the corresponding Stokes vector fields. These optical skyrmions are quasi-skyrmions, and their range of propagation depends on the range of superposed Bessel modes. We have shown longitudinal mode matching of superposed Bessel beams is a necessary condition for the generation of propagation-invariant and non-diffracting skyrmions. The proposed longitudinal mode matching technique facilitates the generation of skyrmions with tunable position and range without any on-axis intensity modulations along the propagation axis. A suitable experimental configuration is suggested to realize variable order skyrmions in Bessel modes. The suggested experimental configuration can produce optical skyrmions even in ultra-short laser pulses with high mode conversion efficacy. This work can provide a new direction for the generation of skyrmions with completely new textures and features with reference to existing skyrmions originating from Laguerre-Gaussian modes.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Synthetic spin dynamics with Bessel-Gaussian optical skyrmions

Keshaan Singh, Pedro Ornelas, Angela Dudley, and Andrew Forbes
Opt. Express 31(10) 15289-15300 (2023)

Physical conversion and superposition of optical skyrmion topologies

Houan Teng, Jinzhan Zhong, Jian Chen, Xinrui Lei, and Qiwen Zhan
Photon. Res. 11(12) 2042-2053 (2023)

Topological state transitions of skyrmionic beams under focusing configurations

Shulei Cao, Luping Du, Peng Shi, and Xiaocong Yuan
Opt. Express 32(3) 4167-4179 (2024)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.