Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 15,
  • Issue 3,
  • pp. 195-200
  • (2007)

The Use of near Infrared Spectroscopy to Quantify Lignite-Derived Carbon in Humus-Lignite Mixtures

Not Accessible

Your library or personal account may give you access

Abstract

Assessment of the percentage of lignite-derived C (lign-C%) in mine soils may be achieved only by using time-consuming and expensive methods. The objectives of this study were (1) to compare near infrared (NIR) spectra of forest humus and lignite and (2) to test whether NIR spectroscopy may assess lign-C% in artificial mixtures of humus and lignite. The experiment consisted of three trials (T1, T2 and T3). In T1 the mixed samples (n = 75) were produced from one humus sample and one lignite sample, in T2 (n = 74) from 74 different humus samples and one lignite sample and in T3 (n = 74) from 74 different humus samples and 15 lignite samples. In each trial, 35 samples were used to develop calibration equations and the remaining samples were used for validation. The humus and the lignite samples used to produce the mixed samples were analysed for C, H, N and S and their NIR spectra were recorded. The lignite samples contained more C, H and S and less N than the humus samples. Principal component analysis revealed significant differences between NIR spectra of the humus and the lignite samples. The prediction of lign-C% in T1 [regression coefficient (b) of linear regression (measured against predicted values) = 0.99, correlation coefficient (r2) = 1.00, standard error of prediction (SEP) = 1.2%] and T2 (b = 0.99, r2 = 0.99, SEP = 1.9%) was very good and in T3 satisfactory (b = 0.83, r2 = 0.92, SEP = 4.0%). The calibration equations of T2 predicted lign-C% satisfactorily and also in the validation samples of T3 (b = 0.88, r2 = 0.93, SEP = 4.0%). The results indicate the ability of NIR spectroscopy to predict lign-C% in the mixed humus and lignite samples and suggest usefulness of NIR spectroscopy for the assessment of the percentage of lignite-derived C in the organic horizons of mine soils.

© 2007 IM Publications LLP

PDF Article
More Like This
Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Evaluation of univariate and multivariate calibration strategies for the direct determination of total carbon in soils by laser-induced breakdown spectroscopy: tutorial

Wesley Nascimento Guedes, Diego Victor Babos, Vinícius Câmara Costa, Carla Pereira De Morais, Vitor da Silveira Freitas, Kleydson Stenio, Alfredo Augusto Pereira Xavier, Luís Carlos Leva Borduchi, Paulino Ribeiro Villas-Boas, and Débora Marcondes Bastos Pereira Milori
J. Opt. Soc. Am. B 40(5) 1319-1330 (2023)

Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy

Nassim Nasseri, Stefan Kleiser, Daniel Ostojic, Tanja Karen, and Martin Wolf
Biomed. Opt. Express 7(11) 4605-4619 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.