Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 22,
  • Issue 4,
  • pp. 041902-
  • (2024)

Second-harmonic generation in periodic fork-shaped χ(2) gratings at oblique incidence

Not Accessible

Your library or personal account may give you access

Abstract

Three-dimensional (3D) nonlinear photonic crystals have received intensive interest as an ideal platform to study nonlinear wave interactions and explore their applications. Periodic fork-shaped gratings are extremely important in this context because they are capable of generating second-harmonic vortex beams from a fundamental Gaussian wave, which has versatile applications in optical trapping and materials engineering. However, previous studies mainly focused on the normal incidence of the fundamental Gaussian beam, resulting in symmetric emissions of the second-harmonic vortices. Here we present an experimental study on second-harmonic vortex generation in periodic fork-shaped gratings at oblique incidence, in comparison with the case of normal incidence. More quasi-phase-matching resonant wavelengths have been observed at oblique incidence, and the second-harmonic emissions become asymmetric against the incident beam. These results agree well with theoretic explanations. The oblique incidence of the fundamental wave is also used for the generation of second-harmonic Bessel beams with uniform azimuthal intensity distributions. Our study is important for a deeper understanding of nonlinear interactions in a 3D periodic medium. It also paves the way toward achieving high-quality structured beams at new frequencies, which is important for manipulation of the orbital angular momentum of light.

© 2024 Chinese Laser Press

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.