Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 78,
  • Issue 1,
  • pp. 76-83
  • (2024)

Miniaturized and Portable Laser Gas Sensor for Standoff Methane Detection With Non-Cooperative Targets

Not Accessible

Your library or personal account may give you access

Abstract

A standoff methane (CH4) sensor with actual hard topographic targets (usually called non-cooperative targets) is essential for natural gas pipeline leakage inspection and many other practical applications. To address this requirement, a miniaturized and low-power-consumption gas sensor was developed based on tunable diode laser absorption spectroscopy for standoff CH4 detection with a non-cooperative target. Wavelength modulation spectroscopy with a 1f normalized 2f detection method was employed for calibration-free CH4 measurement. A Kalman filter algorithm was used to improve the precision of the detection. The performance of the standoff CH4 sensor was evaluated comprehensively under various conditions, including different incident angles, different hard topographic targets, and different standoff distances. The results show that the measurement precision is 0.107% and the sensitivity is 4.08 parts per million per meter (ppm·m) with a time resolution of 1 s and a standoff distance of 40 m. The detection limit can achieve 1.24 ppm·m at an optimal integration time of 70 s. This sensor can be easily integrated into mobile platforms, which lays the foundation for intelligent leak inspection.

© 2023 The Author(s)

PDF Article

Supplementary Material (1)

NameDescription
Supplement 1       sj-docx-1-asp-10.1177_00037028231210586 - Supplemental material for Miniaturized and Portable Laser Gas Sensor for Standoff Methane Detection With Non-Cooperative Targets

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.