Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 78,
  • Issue 1,
  • pp. 120-124
  • (2024)

Sensitive Detection of an Erbium Isotope in an Atomic Beam Using Cavity Ring-Down Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

We have applied cavity ring-down spectroscopy (CRDS) to the study of the 166Er isotope in an atomic beam. These measurements were realized with an external cavity diode laser tuned to the 400.9 nm atomic transition of erbium and a customized high-finesse ring-down optical cavity under vacuum. Erbium atomic beams of different number densities were generated in a tantalum foil micro-crucible within the cavity. Absorbance values of the 166Er isotope between 3 × 10−6 and 7 × 10−5 were measured with a best-case precision on the order of 10−6, which is remarkable when considering the extreme temperatures at which the measurements were conducted, and the short detection path which is characteristic of collimated atomic beams. Number densities of erbium atoms were inferred to be between 2 × 106 and 6 × 107 cm−3. This work demonstrates for the first time the ability of studying dilute atomic beams of refractory materials with high accuracy utilizing CRDS. In these initial studies, we used erbium as a model system, but we expect to extend the proposed approach to the measurement of isotopes of uranium and plutonium for nuclear non-proliferation applications.

© 2023 The Author(s)

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.