Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 8,
  • pp. 873-884
  • (2023)

Elemental Characterization of Leaded and Lead-Free Inorganic Primer Gunshot Residue Standards Using Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

This study describes the use of single particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) for the detection and classification of inorganic gunshot residue (IGSR) particles. To establish reliable multi-element criteria to classify IGSR particles, leaded and lead-free IGSR reference materials were analyzed, and the elemental compositions of the individual particles were quantified. The results suggest that expanded element compositions may be used to classify IGSR particles via spICP-TOFMS compared to those used in conventional IGSR analysis using scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS). For spICP-TOFMS analysis of leaded IGSR particles, classification may be based on the presence of lead (Pb), antimony (Sb), and barium (Ba) just as in SEM-EDS; however, additional particle types, such as lead-copper (Pb–Cu) particles, contribute significantly (∼30%) to the leaded IGSR particle population. In lead-free IGSR particles, the dominate multi-metal particle composition found is titanium–zinc (Ti–Zn) with a conserved Zn:Ti ratio of 1.4:1, but other elements, such as copper (Cu), are also characteristic. In mixtures of the two IGSR reference materials, we were able to classify over 80% of the multi-metal particles detected with no false-positive particle-type assignments. With spICP-TOFMS, particles smaller than those typically measured by SEM-EDS are detected, with estimated median diameters for leaded and lead-free IGSR of 180 and 320 nm, respectively. Through measuring these smaller particles, up to ∼two times more particles per mL are recorded by spICP-TOFMS compared to that found by SEM-EDS. Overall, high-sensitivity and high-throughput analysis using spICP-TOFMS enables quantitative, rapid multi-elemental characterization, and classification of individual IGSR particles.

© 2022 The Author(s)

PDF Article
More Like This
Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter

Christopher R. Dockery and Scott R. Goode
Appl. Opt. 42(30) 6153-6158 (2003)

Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna
Appl. Opt. 49(13) C191-C199 (2010)

Elemental analysis of cotton by laser-induced breakdown spectroscopy

Emily R. Schenk and Jose R. Almirall
Appl. Opt. 49(13) C153-C160 (2010)

Supplementary Material (2)

NameDescription
Supplement 1       Supplemental Material - Elemental Characterization of Leaded and Lead-Free Inorganic Primer Gunshot Residue Standards Using Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry
Supplement 2       Supplemental Material - Elemental Characterization of Leaded and Lead-Free Inorganic Primer Gunshot Residue Standards Using Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.