Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 3,
  • pp. 320-326
  • (2023)

Direct Measurement of Chocolate Components Using Dispersive Raman Spectroscopy at 1000 nm Excitation

Not Accessible

Your library or personal account may give you access

Abstract

Chocolate is a popular food around the world. Making chocolate-based confectionaries involve multiple processing steps including cocoa bean fermentation, cocoa bean roasting, grinding, and then a controlled crystallization, where the processing conditions yields the desirable polymorph V to give chocolate its characteristic snap and texture. Raman spectroscopy is well known as a technique that can provide a non-contact, non-destructive analysis of chemical composition and molecular structure. Yet, excitation in the visible and near-infrared (532–785 nm) has not been possible for dark or milk chocolate because of the samples’ overwhelming fluorescence. New technologies enabling Raman spectroscopy closer to shortwave infrared wavelengths, closer to 1000 nm, are likely to reduce fluorescence of chocolate and other highly fluorescent samples. Based on the successes of 1064 nm excitation to understand chocolate blooming, we hypothesized that 1000 nm excitation would also reduce fluorescence and enable Raman spectroscopy in dark and milk chocolates. We used dispersive Raman spectroscopy at 1000 nm to measure white, milk, and dark chocolate and cocoa nibs. The use of 1000 nm excitation effectively reduced fluorescence, enabling qualitative and quantitative Raman spectroscopy directly on chocolate samples. These feasibility studies indicate that 1000 nm Raman spectroscopy can be used to measure chocolate in a laboratory or process environment.

© 2022 The Author(s)

PDF Article
More Like This
1064  nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence

Chetan A. Patil, Isaac J. Pence, Chad A. Lieber, and Anita Mahadevan-Jansen
Opt. Lett. 39(2) 303-306 (2014)

Discrimination of liver malignancies with 1064 nm dispersive Raman spectroscopy

Isaac J. Pence, Chetan A. Patil, Chad A. Lieber, and Anita Mahadevan-Jansen
Biomed. Opt. Express 6(8) 2724-2737 (2015)

Detection of trace organics in Martian soil analogs using fluorescence-free surface enhanced 1064-nm Raman Spectroscopy

Suning Tang, Bin Chen, Christopher P. McKay, Rafael Navarro-Gonzálezv, and Alan X. Wang
Opt. Express 24(19) 22104-22109 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.