Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 34,
  • Issue 3,
  • pp. 332-338
  • (1980)

Atomic Oxygen Spectra in the Argon Inductively Coupled Plasma (ICP)

Not Accessible

Your library or personal account may give you access

Abstract

Nonresonant, low-energy atomic oxygen transitions from high-energy (11 to 16 eV) singlet, triplet, and quintet states are observed in the 2 kW argon inductively coupled plasma (ICP). A table of ICP oxygen lines and relative emission intensities from 2500 to 10 000 Å is presented. The degree of molecular dissociation in the ICP is evaluated for several small, highly stable molecules as a function of rf power level over the range of 0.2 to 2.25 kW. Quantitative dissociation is achieved at power levels ≥1.95 kW. The use of these nonresonance O(I) lines for the analytical detection of oxygen is reported. The present detection limit for nonoptimized conditions is 0.5 μg. Considerable improvement is expected in the future. The response is linear, and the precision using a gas sampling loop is 0.5% RSD.

PDF Article
More Like This
Fabrication of high-efficiency and low-stray-light grating by inductively coupled plasma(ICP) etching-polishing method

X. Tan, Q. B. Jiao, X. D. Qi, and H. Bayan
Opt. Express 24(6) 5896-5910 (2016)

Propagation characteristics of terahertz wave in inductively coupled plasma

Jinhai Sun, Yan Zheng, Jielin Shi, Yarui Zhao, Yu Li, Ding Wu, He Cai, Xutao Zhang, Xianli Zhu, Yongqiang Liu, Xinxue Sun, Zengming Chao, Hongcheng Yin, Wenqi Lu, and Hongbin Ding
Opt. Express 29(22) 35837-35847 (2021)

Fabrication and properties of broadband antireflective coatings on inert perfluoropolymer films treated by inductively coupled oxygen plasma

Laixi Sun, Shufan Chen, Fan Yang, Xin Ye, Xiaodong Jiang, and Weidong Wu
Opt. Lett. 43(20) 4969-4972 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.