Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • CLEO/Europe and EQEC 2011 Conference Digest
  • OSA Technical Digest (CD) (Optica Publishing Group, 2011),
  • paper CD5_6

Generating Ultra-Short High-Energy Pulses using Dissipative Soliton Resonance: Pulse Compression Schemes

Not Accessible

Your library or personal account may give you access

Abstract

Dissipative soliton resonance (DSR) refers to a phenomenon where the energy of the stable soliton solution increases to extremely large values in a nonlinear dissipative system modeled by the complex cubic-quintic Ginzburg-Landau equation (CGLE) [1]. It occurs in the vicinity of a specific hyper-surface in the multidimensional space of the CGLE parameters. The phenomenon has applications in designing laser oscillators generating ultra-high energy pulses, since the dynamics of such lasers can be well-modeled by the CGLE. The DSR was first found in normally-dispersive media, in concordance with the current design trend for high-energy mode-locked laser oscillators [2-4]. However, we have shown recently that they also exist in anomalous media, opening the possibility of generating ultra-high energy pulses with anomalous path-averaged cavity dispersion [5, 6].

© 2011 Optical Society of America

PDF Article
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.